Chapter 1. **Sets**

1) Empty set is a

- A) Infinite
- B) Finite
- C) Invalid
- D) None of these В

Answer:

2) How many rational and irrational numbers are possible between 0 and 1

- A) finite
- B) infinite
- C) 0
- D) 1

Answer:

3) $A \subset B$ is read as

A) A is less than B

В

- B) A is a proper subset of A
- C) B is a proper subset of A
- D) None of these в

Answer:

4) Every set is a of itself.

- A) improper subset
- B) proper subset
- C) compliment
- D) none

А

Answer:

A set has n elements, then the, number of elements 5) in its power set is

- A) 2ⁿ
- B) 2ⁿ⁻¹
- C) 2^{n+1}
- D) None of these

А

Answer:

The union of sets A and B is expressed as 6)

- A) AUB
- AxB B)
- C) A/B
- Answer: D) Nong of these

7) The intersection of sets A and B is expressed as

- A) AUB
- B) A∩B
- C) A/B
- D) None of these

- В Answer: 8) A-B is read as A) Difference of A and B of B and A B) Difference of A and B C) Neither A nor B

 - D) Both A and B Α

Answer:

9) A — B will contain elements in

- A) A not in B
 - B) B not in A
 - C) Neither A nor B
 - D) Both A and B А

Answer:

- 10) A' will contain how many elements from the original set A
 - A) infinite
 - B) 0
 - C) 1
 - D) All elements of A B

Answer:

- 11) (A')' =
 - A) A' B) U - A
 - C) A

Answer:

12) If A is not equal to B, then the Cartesian product

- A) $A \times B = B \times A$
- B) A x B≠ B x A
- C) Is not possible

С

D) None of these В

Answer:

13) If A has m elements and B has n elements, then A x B has elements

- A) m+n
- B) m-n
- C) m x n
- D) 2n
- Answer: С
- 14) In lst quadrant
 - A) X > 0, Y < 0B) X < 0, Y > 0
 - C) X < 0, Y < 0
 - D) X > 0, Y > 0D

Answer:

15)If $R = \{(1,1), (2,3), (4,5)\}$, then domain of the function is

> A) Dom $R = \{I, 2, 4\}$ B) Dom R {1,3,5}

D) U

C) Dom R {1,1,4,5} D) Dom R = {2,3,4,5} Answer: A

GO TO NEXT PAGE FOR NEXT CHAPTER

Chapter 2.System of real numbers, Exponentsand Radicals

1)	$\sqrt{2}$ is a number.	A) (x - y) B) (x+y)
	A) rational B) irrational	C) (xy)
	C) Natural	D) None of these
	D) None of these	Allswei. A
Answer	: B	8) The $x = y, y = z \Longrightarrow x = z$ the property used is
2)	6 + 7 = 7 + 6 the property used is called	
	A) Closure property w.r.t addition	 A) Symmetric property of equality B) Transitive property of equality
	B) Closure property w.r.t subtraction	C) Closure property
	C) Closure property w.r.t multiplication	D) None of these
Answer	··· A	Answer: B
7 1115 W C1		
3)	$6 \times 7 = 7 \times 6$ the property used is called	9) The element is called additive identity.
	A) Closure property w.r.t addition	A) 1
	B) Closure property w.r.t subtraction	A) 1 B) 0
	C) Closure property w.r.t multiplication	(C) 2
•	D) None of these	D) 4
Answer		Answer: B
4)	An expression which has atleast one term	10) If $x < y, y < z \Longrightarrow x < z$ the property used is
involvir	ng a radical sign is called	called
	A) rational	A) transitive property of inequality.
	B) Surd	B) Symmetric property of equality
	C) Open sentence	C) Closure property
•	D) True sentence	D) None of these
Answer	: В	Answer: A
5) identity	The elementis called multiplicative	11) $5^{3^2} \div 5^{2^3} =$
,		A) 25
	A) 0	B) 1
	B) 1	C) 2
	C) Both A and B	D) 5
A	D) None of these	Answer: D
Answer	: В	12) If $x = 2$ then $x^2 + x^{-2}$ is
	1	12) If $y = 3$ then $y^2 + y^2$ is
6)	The additive inverse of $\frac{1}{A - B}$ is	82
	A - B	A) ਓ 3
	1	B) $\frac{3}{4}$
	A) $\frac{1}{1-\ell+B}$	C) $\frac{1}{5}$
	$(B) = \frac{-\xi + B}{-\xi + B}$	$D) \sim A$
	C) $\frac{1}{-6-B}$	
Answer	D) None of these A	13) The conjugate of $\int 2 - \int 3$ is
1 110 1101		A) $\int \overline{2} + \int 3$
		B) $-\sqrt{2} + \sqrt{3}$
		(1) - 7 - 7

The multiplicative inverse of $\frac{1}{x-y}$ is

7)

D) Both A and C Answer: D

Chapter 3. Logarithms

1)	In acientific notation 756027 is written as		B) Log	$x + \log y - \log z$
1)	In scientific notation 756837 is written as		C) Bot	h A and B
	(1) 7 56837 $\times 10^5$	Answor	D) Nor	A A A A A A A A A A A A A A A A A A A
	R) 7.56837×10^6	Allswei	•	A
	C) 7 56837 $\times 10^2$	8)	The cha	practoristic of 7832 56 is
	D) None of these	8)		
Answei	··· A		A) 4	
1 1115 (1 01	11		B) 3	
2)	In ordinary notation of 7.0056 $\times 10^{-8}$ is written as		C) 2	
_/			D) 1	
	A) 0.000000070056	Answer	:	В
	B) 0.00000070056			
	C) 0.0000070056	9)	The cha	aracteristic of 0.00721 is
	D) All of these			
Answei	:: B		A) $\frac{3}{2}$	
			B) <u>Z</u>	
3)	The logarithm of 1 to any base is		C) 5	
			D) 9	
	A) 1	Answer	:	A
		10)		
	C) 2 D) undefined	10)	The hat	ural logarithm has a base
Answer	<i>D)</i> undernied		A) 10	
Allswei	D		R) e	
			C) 2	
4)	If $\log x - 2$ then $x - 2$		D) 5	
4)	$11 10g_7 x - 2$, then $x - 10g_7 x - 2$	Answar	/ -	D
		Allswei	:	В
	A) 70	Allswei		В
	A) 50 B) 40	11)	: The cor	B nmon logarithm has a base
	A) 50 B) 49 C) 3	11)	: The cor	B nmon logarithm has a base
	 A) 50 B) 49 C) 3 D) 4 	11)	The cor A) e	B mmon logarithm has a base
Answei	A) 50 B) 49 C) 3 D) 4	11)	: The cor A) e B) 10	B nmon logarithm has a base
Answer	A) 50 B) 49 C) 3 D) 4 B	11)	: The cor A) e B) 10 C) 4 D) 5	B nmon logarithm has a base
Answer	A) 50 B) 49 C) 3 D) 4 :: B 3	11)	: The cor A) e B) 10 C) 4 D) 5	B nmon logarithm has a base
Answer 5)	A) 50 B) 49 C) 3 D) 4 T: B If $\log_4 x = -\frac{3}{2}$, then $x = -\frac{3}{2}$	11) Answer	: The cor A) e B) 10 C) 4 D) 5 :	B mmon logarithm has a base B
Answer 5)	A) 50 B) 49 C) 3 D) 4 B If $\log_4 x = -\frac{3}{2}$, then $x =$	11) Answer	: The cor A) e B) 10 C) 4 D) 5 :	B nmon logarithm has a base B
Answer 5)	A) 50 B) 49 C) 3 D) 4 B If $\log_4 x = -\frac{3}{2}$, then $x =$	Answer	The cor A) e B) 10 C) 4 D) 5 $\frac{\log^3 5}{2}$	B mmon logarithm has a base B = x , then x =
Answer 5)	A) 50 B) 49 C) 3 D) 4 T: B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$	Answer 11) Answer 12)	The cor A) e B) 10 C) 4 D) 5 If $\frac{\log_{2}^{35}}{\log_{2}^{2}}$	B mmon logarithm has a base B x = x, then $x =$
Answer 5)	A) 50 B) 49 C) 3 D) 4 T: B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$	Answer 11) Answer 12)	The cor A) e B) 10 C) 4 D) 5 : If $\frac{\log_5^3}{\log_5^2}$	B mmon logarithm has a base B x = x, then $x =$
Answer 5)	A) 50 B) 49 C) 3 D) 4 T: B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3	Answer 11) Answer 12)	The cor A) e B) 10 C) 4 D) 5 If $\frac{\log_5^3}{\log_5^2}$ A) \log_5^2	B mmon logarithm has a base B = x, then $x =x = 3.2$
Answer 5)	A) 50 B) 49 C) 3 D) 4 T B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45	Answer 11) Answer 12)	The cor A) e B) 10 C) 4 D) 5 If $\frac{\log_5^3}{\log_5^2}$ A) log: B) log:	B mmon logarithm has a base B x = x, then $x =x = \frac{3}{2} 3 2x = \frac{3}{2}$
Answer 5) Answer	A) 50 B) 49 C) 3 D) 4 T B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T B	Answer 11) Answer 12)	The cor A) e B) 10 C) 4 D) 5 If $\frac{\log_5^3}{\log_5^2}$ A) \log_8 B) \log_2 C) \log_2	B mmon logarithm has a base B x = x, then $x =x^{2} 3 2x^{3} 3 2$
Answer 5) Answer	A) 50 B) 49 C) 3 D) 4 T: B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T: B	Answer 11) 12)	The cor A) e B) 10 C) 4 D) 5 If $\frac{\log_{5}^{3}}{\log_{5}^{2}}$ A) log: B) log: C) log. D) Nor	B mmon logarithm has a base B x = x, then $x =x^{2} = 3x^{2} = 3x^{3} = 2x^{3} = 2x^$
Answer 5) Answer 6)	A) 50 B) 49 C) 3 D) 4 T: B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T: B $\log_4^{16} = 4$, then $x =$	Answer 11) Answer 12) Answer	The cor A) e B) 10 C) 4 D) 5 The cor $\frac{10g_{5}^{3}}{10g_{5}^{2}}$ A) log: B) log: C) log. D) Nor C) log.	B mmon logarithm has a base B x = x, then $x =x^2 = 3x^2 = 3x^3 = 2x^3 $
Answer 5) Answer 6)	A) 50 B) 49 C) 3 D) 4 T B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T B $\log_a^{16} = 4$, then $x =$	Answer 11) Answer 12) Answer	The cor A) e B) 10 C) 4 D) 5 The cor $\frac{100}{25}$ If $\frac{100}{100}{25}^{2}$ A) $\frac{100}{100}{25}^{2}$ B) $\frac{100}{100}{25}^{2}$ A) $\frac{100}{100}{25}^{2}$ B) $\frac{100}{1$	B mmon logarithm has a base B = x, then x = 2 3 2 2 3 4 3 2 be of these B
Answer 5) Answer 6)	A) 50 B) 49 C) 3 D) 4 T B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T B $\log_a^{16} = 4$, then $x =$ A) 2	Answer 11) Answer 12) Answer	The cor A) e B) 10 C) 4 D) 5 The cor $\frac{10035}{1002}$ A) $\frac{10035}{1002}$ A) $\frac{10035}{1002}$ C) $\frac{10035}{1002}$ C) $\frac{10035}{1002}$ D) Nor	B mmon logarithm has a base B x = x, then $x =x^2 = 3x^2 = 3x^3 = 2x^3 $
Answer 5) Answer 6)	A) 50 B) 49 C) 3 D) 4 T B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T B $\log_a^{16} = 4$, then $x =$ A) 2 B) 3	Answer 11) Answer 12) Answer	The cor A) e B) 10 C) 4 D) 5 If $\frac{\log_{5}^{3}}{\log_{5}^{2}}$ A) log: B) log: C) log. D) Nor	B mmon logarithm has a base B x = x, then $x =x^{2} = 3x^{2} = 3x^{3} = 2x^{3} = 2x^$
Answer 5) Answer 6)	A) 50 B) 49 C) 3 D) 4 T B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T B $\log_a^{16} = 4$, then $x =$ A) 2 B) 3 C) 4	Answer 11) Answer 12) Answer	The cor A) e B) 10 C) 4 D) 5 If $\frac{\log_{5}^{3}}{\log_{5}^{2}}$ A) log: B) log: C) log. D) Nor	B mmon logarithm has a base B x = x, then $x =x^{2} = 3x^{2} = 3x^$
Answer 5) Answer 6)	A) 50 B) 49 C) 3 D) 4 T: B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T: B $\log_a^{16} = 4$, then $x =$ A) 2 B) 3 C) 4 D) 32	Answer 11) Answer 12)	The cor A) e B) 10 C) 4 D) 5 The cor $\frac{10g_{5}^{3}}{10g_{5}^{2}}$ A) log: B) log: C) log. D) Nor C) log.	B mmon logarithm has a base B x = x, then $x =x^{2} = 3x^{2} = 3x^$
Answer 5) Answer 6)	A) 50 B) 49 C) 3 D) 4 T B If $\log_4 x = -\frac{3}{2}$, then $x =$ A) $\frac{1}{2}$ B) $\frac{1}{8}$ C) 3 D) 45 T B $\log_a^{16} = 4$, then $x =$ A) 2 B) 3 C) 4 D) 32 T A	Answer 11) Answer 12) Answer	The cor A) e B) 10 C) 4 D) 5 The cor $\frac{10g_{5}^{35}}{10g_{5}^{2}}$ A) log: B) log: C) log. D) Nor C) log.	B mmon logarithm has a base B = x, then $x =\begin{bmatrix} 2 & 3 & 2 \\ 2 & 3 & 4 \\ 4 & 3 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$

A) $3\log x + \log y - 2\log z$

7) $\log \frac{x^3 y}{z^2} =$

Chaj	pter 4. <u>Algebraic Expressions</u>	8)	(a+
1)	A polynomial having one term is called		A) P)
	A)		о С)
	A) monomial P) Pinomial		D)
	C) Trinomial	Answei	r:
	D) None of these		
Answ	er: A	9)	x+,
2)	A polynomial having two term is called		A)
	A) Dinomial		B)
	B) Trinomial		D)
	C) Binomial	Answei	::
	D) None of these		
Answ	er: C	10)	y+-
2)	The degree of $x^4 y + y^2 + y^3$		• >
5)	The degree of $x y + y + y$		A) B)
	18		C)
	A) 4 B) 5		D)
	C) 6	Answei	:
	D) 7		
Answ	er: B	11)	If x
	The degree of polynomial $y^2 + yy + y^2$ is		A)
4)	The degree of polynomial $x + xy + y$ is		B)
			C)
	A) 3 D) 4		D)
	B) 4 C) 6	Answei	r:
	D) 2	12)	(n.
Answ	er: D	12)	Ψ.
			A)
5)	The degree of the polynomial 9 is		B)
	A \ 1		C)
	A) 1 B) 2	Answei)
	C) 3	Allswei	
	D) 0	13)	(x+
Answ	er: D	,	
	4 1 32		A)
6)	$(a + b + c)^2 =$		B)
	(1) $a^{2} + b^{2} + c^{2} + 2ab + abc + 2ca$		C)
	A) $a^2 + b^2 + c^2 + 2ab + 2ac + 2ca$	Answei	D)
	C) $a^{2} + b^{2} + c^{2} + 2ab + abc + 2ca$	Allswei	
	D) $a^2 + b^2 - c^2 + 2ab + abc + 2ca$	14)	(\overline{D})
Answ	er: A	14)	(7.
			A)
			B)
7)	If $a + b = 2$, $a - b = 2$ then $a^2 + b^2 =$		C)
			D)
	A) 4 B) 5	Answei	r:
	D) 3 C) 3		
	D) 2		
	/		

В

Answer:

8) $(a+b)^2 + (a-b)^2 =$ A) $3(a^2-b^2)$

A) $3(a^2-b^2)$ B) $2(a^2-b^2)$ C) $4(a^2-b^2)$ D) $2(-a^2-b^2)$ wer: B

Chapter 5. Factorization, H.C.F, L.C.M, simplification and Square root

)

1) Factors of
$$(a^2 - \frac{1}{4})$$
 are
A) $(a + \frac{1}{2})(a - \frac{1}{3})$
B) $(a + \frac{3}{2})(a - \frac{1}{3})$
C) $(a + \frac{1}{2})(a - \frac{1}{3})$
D) none
Answer: C
2) $a^4b^2 - a^2b^4 = a^2b^2$ (_____) (____
A) $(a+b)(a+b)$
B) $(a+b)(a-b)$

В

C) (a-b)(a-b) D) none

Answer:

If $(x^3-x^2-226x+1410)$ is divided by (x+17) then 3) remainder is

- A) 0
- B) 20
- C) 40
- D) 50

Answer:

4)

factors of $(a^3 - 27)$ are

A) $(a+3)(a^2-3a+9)$ B) $(a-3)(a^2+3a+9)$ C) $(a+3)(a^2-3a+9)$

В

D

D) none

Answer:

5) Highest common factor is also known as

- A) highest factor
- B) Greatest common divisor
- C) Both A and B

В

С

D) none

Answer:

6) H.C.F can be found by _____methods.

A) 4

- B) 3
- C) 2

D) 9 Answer:

- C) factor method and division method
- D) none С

Answer:

8)
$$2(a - b)^2 - (a - b)^3 =$$

A) $(2 - a + b) (a - b)^2$
B) $(2 - a + b) (a + b)^2$
C) $(2 - a - b) (a - b)^2$
D) $(2 + a + b) (a - b)^2$
Answer: A

Answer:

9) H.C.F, G.C.D of
$$x^3 + 8y^3$$
 and $x + 2y =$

A)
$$x - 2y$$

B) $x - 2xy$
C) $x + 2y$
D) none of these
wer: A

Answer:

10) L.C.M of
$$x^3 + 8y^3$$
 and $x + 2y =$
A) $(x+2y)(x^2+2xy+4y^2)$
B) $(x-2y)(x^2+2xy+4y^2)$
C) $(x+2y)(x^2-2xy+4y^2)$
D) $(x+2y)(x^2+2xy-4y^2)$
Answer: C

11)
$$(a^2 - b^2)^2 =$$

A)
$$(a^{2}+2ab+b^{2})(a^{2}-2ab+b^{2})$$

B) $(a^{2}-2ab+b^{2})(a^{2}-2ab+b^{2})$
C) $(a^{2}+2ab+b^{2})^{2}$
D) none
r: A

Answer:

12) Factors of
$$x^2 - y^4$$
 are
A) $(x+y^2)(x-y^2)$
B) $(3x+y^2)(x-y^2)$

C)
$$(x-y^2)(x - y^2)$$

D) $(2x-y^2)(x - y^2)$
Answer: A

L.C.M of two or more polynomials is found by two 13) methods which are

- A) by Factorization and by algebra
- B) by Factorization and by H.C.F
- C) by Factorization and by hypothesis

D) none В

- 7) The two methods of finding H.C.F are
 - A) factor method and algebraic method
 - B) factor method and numerical method

Chapter 6. <u>Algebraic Sentences</u>

1)	(2,3) lies inquadrant.	
	A) 1^{st} B) 2^{nd} C) 3^{rd} D) None of these	
Answer:	A	
2)	(-6, 4) lies inquadrant.	
	A) 1^{st} B) 2^{nd} C) 3^{rd} D) None of these	
Answer:	В	
3)	$(\frac{3}{4}, -1)$ lies in quadrant.	
Answer:	A) 2^{nd} B) 1^{st} C) 4^{th} D) None of these C	
1 110 0 011	C	
4)	In (3, 4), 3 is called	
	 A) abscissa B) ordinate C) ordered pair D) none of these 	
Answer:	A	
5)	In (3,4), 4 is called	
	 A) abscissa B) ordinate C) ordered pair D) none of these 	
Answer:	В	
6) then sucl	If symbol of equality is involved in an op h sentence is called a/an	pen sentence

A) open sentence

- B) equation
- C) vertical axis
- D) horizontal axis

Answer: B

7) An______sentence containing the symbol of > or < is called inequation.

- A) open
- B) closed
- C) zero
- D) none of these

А

Answer:

8) Standard quadratic equation is $ax^2+bx+c = 0$, where the value of a

A)	= 0
B)	$\neq 0$
C)	>0
D)	< 0
Answer:	В

9) The equation $ax^2+bx+c = 0$, remain quadratic if

A) b=0 and $c \neq 0$ B) b = c = 0C) $b \neq 0$ and c = 0D) all of these

D

Answer:

10) The value of variable for which given equation becomes true is called a ______ of the equation.

- A) value
- B) constant
- C) root
- D) none of these er: C

Answer:

11) An equation containing one or more radical expressions involving unknown is called ______equation.

- A) linear
- A) radical
- B) irrational equation
- C) both B and C D

Answer:

12) Let $x \in R$, then |x| is read as

- A) modulus of x
- B) absolute value of x
- C) both A and B
- D) none of these C

Chapter 7. Matrices
1) If matrix
$$A = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$$
 then its order will be =
(A) $3x3 \\ B & 2x2 \\ C & 4x2 \\ D & 2x7 \\ Answer: B \\
(C) & 4x2 \\ D & 2x7 \\ Answer: B \\
(C) & 4x2 \\ D & 2x7 \\ Answer: B \\
(C) & 4x2 \\ D & 2x7 \\ Answer: B \\
(C) & 4x2 \\ D & 2x7 \\ Answer: B \\
(C) & 4x2 \\ D & 2x7 \\ Answer: B \\
(C) & 5x3 \\ D & 10 \\ Answer: D \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: B \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ B & 3x2 \\ C & 3x3 \\ D & 10 \\ Answer: A \\
(C) & 11 \\ Answer: B \\
(D) & 11 \\ Answer \\
(D) & 11 \\ Answer \\
(D) & 11 \\ Answer \\
(D) & 11 \\ Answ$

Chapter 8. **Elimination**

1) The method of finding a relation independent of any variable id called_____.

A) substitution

- B) elimination
- C) proposition
- D) addition В

Answer:

2)

The relation obtained after elimination is called

A) surd

B) result

C) eliminant

D) none of these С

Answer:

Elimination by application of formulae is a method 3) involving the

A) value

B) sentence

____.

- C) formula
- D) none of these С

Answer:

4) If a + b = 3 and a - b = 2 then the relation free from 'b' is

> A) b = 3 B) a = 2C) 2a = 5

D) a = 4 С

Answer:

b + x = 0c + x = 0 then it will be Eliminate *x* from 5)

A) b - c = 0

_.

- B) c-b=0
- C) both A and B
- D) none of these С

Chapt	er 9.	<u>Variations</u>	8)	Th	e triplicate of a:b is
-	-				1 1
1)	The	relation between similar quantity is called		A)	$a_{1}^{2}: b_{1}^{2}$
				B)	$a_{3}^{1}:b_{3}^{1}$
	۸)	rogult		C)	$a^3 : b^3$
	R) 1	ratio		D)	None of these
	C)	connection	Answer	:	С
	D)	comparison			
Answer	:	B	9)	If a	a:b :: c:d then a,b,c,d are called
2)	The	ratio between two quantities can be represented by		A)	proportional
2) the	sym	nol		B)	proportion
une	_synn			C)	connected
	Δ)			D)	both A and B
	R)		Answer	:	А
	C)	१			
	כ) ח		10)	If a	a:b :: c:d then a,b,c,d are in
Δnswer	. D) .	B			
Answei	•	D		A)	proportion
3)	The	quantities a and h are called of the ratio		B)	proportional
3)	THE	quantities a and b are caned of the fatto.		C)	both A and B
	Δ)	ratio		D)	none of these
	R) 1	terms	Answer	:	А
	C)	relation			
		none of these	11)	a:b	:: c:d can be written as
Answar	. D) .	B			
Allswei	•	D		A)	a:b < c:d
4)	The	first term of ratio is called		A)	a:b > c:d
4)	THE	Inst term of fatio is called		B)	a:b = c:d
	A)	relation		C)	none of these
	\mathbf{A}	prepayition	Answer	:	С
	D) ()	antacadant			
			12)	Ina	a:b :: c:d, a and d are called
Δnswer		C			
Answei	•	C		A)	extremes
5)	The	second term of the ratio is called		B)	means
5)	THC	second term of the ratio is called		C)	numbers
	۸)	relation		D)	none of these
	R) 1	proposition	Answer	:	А
	C)	antecedent			
	D)	consequent	13)	Th	e method of using the symbol k is called _
Answer	:	D	method.	•	
6)	The	dumliante notio of 2012h is		A)	R
0)	The			B)	Р
	A)	$4a^2 \cdot b^2$		C)	К
	\mathbf{A}	$4a \cdot b$		D)	None of these
	D) '	$4a \cdot 90$	Answer	:	С
	C)	42.01^2			
Answer	D) 48 :	B	14)	If a	a:b :: c:d then b:a :: d:c is called
	1	1		ک ار	invertendo
7)	a <u>2</u> · I	$b_{\overline{2}}$ is the sub-duplicate of		д) В)	alternendo
• •	u I	- is the sub-duplicate of		C)	componendo
	A)	$a^2:b^2$		D)	dividendo
	R)	a : b	Answer		A
	C)	h : a	1 115 WCL	•	2 x
		$b^2 \cdot a^2$	15)	If a	rb ·· c·d then a.c ·· b·d is called
Answer		B	1.57	11 6	
17113 WCI	•	L L L L L L L L L L L L L L L L L L L			

A) invertendo

- B) alternendo
- C) componendo

В

D) dividendo

Answer:

16) If a:b :: c:d then (a+b):b :: (c+d):d is called_____.

- A) invertendo
- B) alternendo
- C) componendo
- D) dividendo С
- Answer:

If a:b :: c:d then (a-b):b :: (c-d):d is called_____. 17)

- A) invertendo
- B) alternendo
- C) componendo
- D) dividendo D

Answer:

- 18) "a ratio b is same as c ratio d", this statement is suitable for
- A) a:c :: b:d
- B) a:b :: c:d
- C) c:a :: b:d
- D) none of these В

Chapter 10. Information Handling

1) The information given in quantitative or qualitative from regarding particular characteristic is called .

- A) variable
- B) data
- C) constant
- D) none of these В

Answer:

is a characteristic that can take different 2) values for the elements in the data.

A) variable

- B) data
- C) constant
- D) none of these

Answer: A

is a variable because it varies from country to 3) country.

- A) sample
- B) population
- C) error
- D) all of these

B

Answer:

The collection of all observations (elements) relating to 4) a characteristics is called statistical _____ or sample

- A) sample
- B) population
- C) set
- D) all of these В

Answer:

is a subset of a population. 5)

- A) population
- B) error
- C) sample
- D) none of these

Answer: C

variable can be represented numerically. 6)

A) qualitative

- B) quantitative
- C) both A and B
- D) none of these В

Answer:

7)

variable cannot be represented numerically.

C) both A and B

D) none of these

Answer: A

variable is that variable whose value arises 8) through measurement.

- A) discrete
- B) continuous
- C) both A and B
- D) none of these В

Answer:

9) ______variable is that variable whose value arises through counting.

- A) discrete
- E) continuous
- F) both A and B
- G) none of these

Answer: A

Colour, happiness, quality, intelligence are the 10) examples of _____variable.

- A) quantitative
- B) qualitative
- C) continuous
- D) discrete В

Answer:

When an original enquiry is conducted for the 11) collection of information, the collected data are called data.

- A) primary
- A) secondary
- B) constant
- C) continuous

Α Answer:

12) ______ is the process of sorting the data into classes or groups having similar properties, according to their observed characteristics.

- A) classification
- B) tabulation
- C) distribution
- D) all of these Α

Answer:

The procedure employed to reduce and simplify the raw 13) data is called classification and .

- A) classification
- B) tabulation
- C) sorting
- D) distribution

Answer: В

B) quantitative

A) qualitative

 $\frac{14}{h} = \frac{14}{h}$

A) number of classes

- B) number of values
- C) class height
- D) all of these A

Answer:

15) _____ diagram consists of horizontal or vertical bars of equal widths and lengths proportional to the value they represent.

- A) simple bar
- B) multiple bar
- C) frequency polygon
- D) all of these A

Answer:

16) diagram is used for the comparison of characteristics two or more variable, simultaneously.

- A) simple bar
- B) multiple bar
- C) histogram
- D) frequency polygon B

Answer:

- A) multiple bar
- B) simple
- C) histogram

D

D) pie

Answer:

18) Measure of central tendency gives a picture of whole

- A) population
- B) sample
- C) data
- D) all of these A

Answer:

19) The most common types of central tendency commonly known as_____.

- A) variance
- B) average
- C) standard deviation
- D) all of these B

Chapter 11. Fundamental Concepts of Geometry

- A) one
- B) two
- C) three
- D) four

Answer: B

2) One and only one plan can pass through ______ distinct points.

- A) two
- B) three
- C) four
- D) five

Answer: B

3) If the sum of the measures of the two angles is 90° then they are called ______angles.

- A) complementary
- B) supplementary
- C) adjacent
- D) alternate
- Answer:

4) If the sum of two angles is 180° then they are called angles

- A) supplementary
- B) complementary
- C) adjacent
- D) alternate A

Answer:

5) The compliment of 80° is

- A) 20°
- B) 10°
- C) 40°
- D) 6**0**°
- Answer: A

6) The supplement of θ is

- A) $(180^{\circ} \theta)$
- B) $(180^{\circ} + \theta)$
- C) (90° θ).
- D) None of these

Answer: A

7) Two lines are said to be perpendicular on each other, If they form a _____angle.

A) right

- B) Straight
- C) alternate
- D) none of these

Answer:

8) Two intersecting line can't be_____to the third line

- A) parallel
- B) perpendicular
- C) both A and B

А

D) none of these

Answer:

9) A triangle having no side congruent is called triangle.

- A) Equilateral
- B) Scalene
- C) Isosceles
- D) Acute angled B

Answer:

10) The sum of the measures of the all angles is _____.

A) 90^{0} B) 180^{0} C) 50^{0} D) None of these Answer: B

11) The sum of the measures of the all angles of quadrilateral is

A) 90° A) 150° B) 360° C) 30° Answer: C

12) The point of concurrency of three medians of a triangle is called_____.

- A) in-centre
- B) Circum-centre
- C) centroid
- D) ortho-centre

Answer: C

13) The perpendicular from the vertex of a triangle to the opposite side is called_____.

- A) median
- B) altitude
- $C) \quad \text{both } A \text{ and } B$
- D) none of these ar: B

Chapter 12. Demonstrative Geometry

1) The sum of the lengths of any two sides of a triangle must be then the third side	B) equal C) congruent
must beuten the time side.	D) none of these
A) less	Answer: C
B) greater	
C) equal	8) If the three sets of corresponding sides of two triangle
D) none of these	are in proportion, the triangles are
Anewer: B	······································
Allswei. D	A) similar
2) The segment connecting the mid points of two sides of	B) congruent
2) The segment connecting the find-points of two sides of	C) proportional
	D) equal
A) normandiaular	Answer: A
A) perpendicular	
B) parallel	(a) If two lines are cut by a transversal then
C) coincident	the pairs of corresponding angles are congruent
D) all of them	the pairs of corresponding angles are congruent.
Answer: B	(Λ) intersecting
	A) Intersecting D) morphal
3) In a triangle, the longest side is always opposite to the	b) paraner
angle.	C) perpendicular
	D) coincident
A) smallest	Answer: B
B) largest	
C) both A and B	10) The sum of all the three interior angles of a triangle is
D) none of these	·
Answer: B	
	A) 360°
4) If three sides of one triangle are congruent to three sides	B) 180°
of another triangle, the triangles are	C) 90°
	D) 45°
A) similar	Answer: B
B) proportional	
C) congruent	11) If two sides of a triangle are congruent then the angles
D) none of these	opposite to them are
Answer: C	
	A) not congruent
5) If three angles of one triangle are congruent to three	A) equal
angles of another triangle, the triangles are	B) congruent
angles of another triangle, the triangles are	C) all of these
A) congruent	Answer: C
R) couglient	
b) equal	
C) similar D) menostional	
D) proportional	
Answer: C	
6) If two angles and the included side of one triangle are	
congruent to the corresponding parts of another triangle, the	
triangles are	
A) similar	
B) equal	
D) equal	

- C) proportional
- D) congruent

D Answer:

7) If two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are_____.

A) similar

Chapter 13. Circle

Set of points which is equidistant from a fixed point is 1) called .

A) square

- B) rectangle
- C) circle

D) rhombus С

Answer:

A circle has centre(s). 2)

- A) two
- B) three
- C) four
- D) one

D Answer:

3) A line segment touching the circle at two points is called___.

- A) line
- B) chord
- C) diameter
- D) radius

В Answer:

A line segment touching the circle at two points and 4) passing through centre is called

- A) line
- B) chord
- C) diameter
- D) radius С

Answer:

5) A chord passing through the centre of the circle is called__.

- A) line
- B) diameter
- C) radius
- D) none of these В

Answer:

Two circles having same centre are called Answer: 6) circles.

- A) same
- B) alike
- C) concentric
- D) None of these С

Answer:

Double of the radius is_____. 7)

- A) chord
- B) Diameter

- C) secant
- D) none of these

В

Answer:

9)

10)

8) A line touching the circle at two points is called

- A) radius B) diameter C) chord D) secant D Answer: . A) Equilateral B) Scalene C) Isosceles D) Acute angled В Answer: The sum of the measures of the all angles is .
 - A) 90⁰
 - B) 180°
 - C) 50°
 - D) None of these

Answer: В

11) The sum of the measures of the all angles of quadrilateral is .

A) 90° A) 150[°] B) 360° C) 30°

С Answer:

12) The point of concurrency of three medians of a triangle is called_____.

- A) in-centre
- B) Circum-centre
- C) centroid
- D) ortho-centre С

13) The perpendicular from the vertex of a triangle to the opposite side is called .

- A) median
- B) altitude
- C) both A and B
- D) none of these

Chapter 14. Practical Geometry

Answer: A

1)	In a triangle, theangle can be only one.	8)tangent(s) can be drawn from a point which is inside the circle.
	A) acute	
	B) right	A) one
	C) reflex	B) two
	D) None of these	C) no
Answe	r: B	D) none of these
		Answer: C
2)	The point of concurrency of the medians is	
	A) in-centre	
	B) Circum-centre	
	C) Ortho-centre	
	D) centroid	
Answe	r: D	
3)	The point of concurrency of the altitudes is	
	A) in-centre	
	B) Circum-centre	
	C) Ortho-centre	
	D) centroid	
Answe	r: C	
4)	The point of concurrency of the angle bisector is	
	A) in-centre	
	B) Circum-centre	
	C) Ortho-centre	
	D) centroid	
Answe	r: A	
5)	The point of concurrency of side bisectors is called	
	A) in-centre	
	B) Circum-centre	
	C) Ortho-centre	
	D) centroid	
Answe	r: B	
6) the circ	tangent(s) can be drawn from a point outside cle.	
	A) one	
	B) two	
	C) three	
	D) four	
Answe	r: B	
7)	tangent(s) can be drawn from a point which is	

on the circle.

- A) one
- B) twoC) three
- D) four

Chapt	er 1	5. <u>Trigo</u>	nom	<u>etry</u>					A) 2
1)	T		•		•	1	. (B) 3 C) 1
1)	1 rig	gonometry	18	an	important	branch	OI		D) 0
		·						Answer:	C
	A)	Physics]
	B)	Chemistry						8)	$1 + Tan^2\theta =$
	C)	Biology	_						$(\Lambda) \sec^2 8$
Answer	D)	D	S						$\begin{array}{c} \text{A)} \text{see 0} \\ \text{B)} \text{Tan}^2 8 \end{array}$
7 mis wer.	•	D							C) $\cos^2 8$
2)			plays	signif	icant role ir	n the field	of		D) None of these
navigati	on,	surveying, e	electro	onics,	electrical en	gineering a	and	Answer:	А
many of	ner t	branched of p	onysic	al scier	ices.			9)	$1 + Cot^2 \theta =$
	A)	Biology))	
	B)	Trigonomet	ry						A) $\csc^2\theta$
	C)	Anatomy							B) $\sin^2\theta$
Answor	D)	Geology							C) $\cos^2\theta$
Allswei.	•	Б						Ancuar	D) $Tan^2\theta$
3)	The	e <u> </u>	ngles	and th	ree sides of	a triangle	are	Answer:	A
called el	leme	nts of a trian	gle.			-		10)	$\tan 20^0 = \cot (\underline{})$
	A)	true							0
	A) B)	two							A) 20°
	C)	four							B) 30° C) 70°
	D)	none of thes	se						D) 80°
Answer:	:	В						Answer:	С
4)	sin	8 =						11)	$\sin 30^0 = \cos ($)
	• `	Ρ							A> 70 ⁰
	A)	B							A) 50°
	B)	K	-						B) 30°
	C)	Both A and	B						C) 40°
Answer:	D)	B	50					Answer:	В
								12)	$tan \theta = \cot(0)$
5)	cos	8 =						12)	tano – cot ()
	• •	Р							A) $90^0 + \theta$
	A)	K							B) $90^{\circ} - \theta$
	B)	<u>k</u>							$C) 90^{\circ}$
	C)	B						Answer:	B) 20 + 0 B
	D)	None of the	se						
Answer:		В						13)	$Cot 60^\circ =$
6)	tan	8 =							A) / 3
		D							B) <u>1</u>
	A)	B							$\int 3$ C) 1
	B)	<u>Р</u> К							D) None of these
	C)	K B						Answer:	В
	D)	None of the	se					14)	$-i\pi c 0^0$
Answer:	:	А						14)	511100 =
									A) $\frac{1}{2}$
7)	Sin	$^{2}60^{\circ} + \cos^{2}$	² 60° =	=					B) $\frac{\sqrt{3}}{\sqrt{3}}$
,									2

C) $\frac{1}{72}$ D) 0 Answer: B 15) $\sin\theta$.sec θ = A) cotθ B) $\cos\theta$ C) $tan\theta$ D) $cosec\theta$ Answer: C $\cot\theta$ is the reciprocal of_____. 16) A) $\sin\theta$ B) tanθ C) $sec\theta$ D) cosecθ Answer: B $\int \overline{1 - \sin^2 \theta} =$ 17) A) $\cos^2\theta$ B) $\sin\theta$ C) $sec\theta$ D) $\cos\theta$

Answer: D